US 2003/0005256 Al

MECHANISM TO REDUCE THE COST OF
FORWARDING POINTER ALIASING

RELATED APPLICATION

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 60/299,244, filed on Jun. 19, 2001.

[0002] The entire teachings of the above application are
incorporated herein by reference.

GOVERNMENT SUPPORT

[0003] The invention was supported, in whole or in part,
by a grant F30602-98-1-0172 from Air Force Research Lab.
The Government has certain rights in the invention.

BACKGROUND OF THE INVENTION

[0004] Forwarding pointers are an architectural mecha-
nism that allow references to a memory location to be
transparently forwarded to another location. Known vari-
ously as “invisible pointers,”“forwarding pointers” and
“memory forwarding,” they are familiar to the hardware
community but to date have been incorporated into very few
architectures.

[0005] One reason that forwarding pointers have received
little support is that they have been perceived as possessing
limited utility. Recently, however, it has become apparent
that forwarding pointers are indeed useful constructs that
can expedite program execution. Chi-Keung Luk and Todd
C. Mowry, “Memory Forwarding: Enabling Aggressive
Layout Optimizations by Guaranteeing the Safety of Data
Relocation,” Proc. ISCA 1999, pp. 88-99 (hereafter “Luk”),
incorporated by reference herein in its entirety, show that
using forwarding pointers to perform safe data relocation
can result in significant performance gains on arbitrary
programs written in C, speeding up some applications by
more than a factor of two. Jeremy Brown, “Memory Man-
agement on a Massively Parallel Capability Architecture”,
Ph.D. thesis proposal, M.I.T., December 1999, gives an
algorithm for performing asynchronous local compacting
garbage collection in a massively parallel distributed sys-
tem. This algorithm uses forwarding pointers to avoid the
high run-time costs usually associated with such a system.
Thus, there is growing motivation to include hardware
support for forwarding pointers in novel architectures.

[0006] A second and perhaps more significant reason that
forwarding pointers have received little attention from hard-
ware designers is that they introduce aliasing—that is, it is
possible for two different pointers to resolve to the same
word in memory.

[0007] FIG. 1A illustrates how aliasing occurs. A first
pointer P, 14 points directly to some target data 16. A
second, indirect pointer, P, 10 points to a forwarding pointer
12 which in turn points to the target data 16. Thus, pointers
P, and P,, which hold different values, resolve to the same
target data 16.

[0008] FIGS. 1B and 1C illustrate one manner in which
such a scenario can occur. Here, two data objects A4 and D
16 are stored in a memory 2A (FIG. 1B), with a pointer P,
10 directly referencing data object D 16. As a result of data
compaction or other operations, data object D 16 is moved,
as shown in memory 2B (FIG. 1C), and a new forwarding

Jan. 2, 2003

pointer 12 is inserted into data object D’s old location. Thus
pointer P, 10 now points to the forwarding pointer 12 which
points to the new location of data object D 16. Pointer P, 10
is therefore now an indirect pointer. Meanwhile, a new direct
pointer P, 14 has been created which points to the new
location of data object 16, resulting in the combination of
pointers pictured in FIG. 1A.

[0009] The presence of this aliasing necessarily introduces
run time costs in order to ensure correctness of execution. In
Luk, two specific problems are identified. First, direct
pointer comparisons are no longer a safe operation; some
mechanism must be provided for determining the final
addresses of the pointers. Second, seemingly independent
memory operations may no longer be reordered in out-of-
order machines.

[0010] In Luk, the problem of pointer comparisons is
addressed by inserting code to determine the final address
for each pointer, unless the compiler is able to determine that
the pointers do not point to relocated objects. The overhead
of this approach is potentially large.

[0011] In the best case, both target memory words will be
resident in the cache, neither of them will contain a for-
warding pointer, and the pointer comparison will be slowed
down by roughly an order of magnitude. However, since
pointer comparisons often precede a decision to perform
operations on an object, a common case will be when one or
both dereferences cause a cache miss, slowing down the
comparison by another order of magnitude.

[0012] The solution proposed by Luk for reordering
memory operations is to use “data dependence speculation,”
which allows loads to execute speculatively before it is
known that they are independent of any preceding stores. In
an architecture that supports data dependence speculation, it
is fairly easy to extend the hardware to operate correctly in
the presence of forwarding pointers. Luk found that this
solution is effective as incorrect speculation occurs only
rarely. However, Luk assumes the presence of some fairly
complex hardware. For architectures in which silicon area
efficiency is a concern, a lower cost alternative is preferable.

[0013] The forwarding pointer aliasing problem is an
instance of the more general challenge of determining object
identity in the presence of multiple and/or changing names.
This problem has been studied explicitly. See, for example,
Setrag N. Khoshafian, George P. Copeland, “Object Iden-
tity”, Proc. 1986 ACM Conference on Object Oriented
Programming Systems, Languages and Applications, pp.
406-416, incorporated by reference herein in its entirety.

[0014] A natural solution which has appeared time and
again is the use of system-wide unique object IDs or UlDs.
UIDs completely solve the aliasing problem, but have two
disadvantages.

[0015] First, the use of UIDs to reference objects requires
an expensive translation each time an object is referenced to
obtain the virtual address of the object.

[0016] Second, quite a few bits are required to ensure that
there are enough UIDs for all objects and that globally
unique IDs can be easily generated in a distributed comput-
ing environment. In a large system, at least sixty-four bits
would likely be required in order to avoid any expensive
garbage collection of UIDs and to allow each processor to
allocate UIDs independently.



